A million-scale dataset and generalizable foundation model for nanomaterial-protein interactions
Published in arXiv, 2025
Unlocking the potential of nanomaterials in medicine and environmental science hinges on understanding their interactions with proteins, a complex decision space where AI is poised to make a transformative impact. However, progress has been hindered by limited datasets and the restricted generalizability of existing models. Here, we propose NanoPro-3M, the largest nanomaterial-protein interaction dataset to date, comprising over 3.2 million samples and 37,000 unique proteins. Leveraging this, we present NanoProFormer, a foundational model that predicts nanomaterial-protein affinities through multimodal representation learning, demonstrating strong generalization, handling missing features, and unseen nanomaterials or proteins. We show that multimodal modeling significantly outperforms single-modality approaches and identifies key determinants of corona formation. Furthermore, we demonstrate its applicability to a range of downstream tasks through zero-shot inference and fine-tuning. Together, this work establishes a solid foundation for high-performance and generalized prediction of nanomaterial-protein interaction endpoints, reducing experimental reliance and accelerating various in vitro applications.
Recommended citation: Hengjie Yu, Kenneth A. Dawson, Haiyun Yang, Shuya Liu, Yan Yan, Yaochu Jin. A million-scale dataset and generalizable foundation model for nanomaterial-protein interactions. 2025, arXiv:2507.14245
Download Paper
